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Abstract. This is the second in a three paper series on phase transitions on fractals. Here 
we construct and investigate a family of fractals which are generalisations of the Sierpinski 
gaskets ( S G S )  to all Euclidean dimensionalities. These fractal lattices have a finite order 
of ramification. and can be considered ‘marginal’ between one-dimensional and higher- 
dimensional geometries. Physical models defined on them are exactly solvable. We argue 
that short-range spin models on the SG show no finite-temperature phase transitions. As 
examples, we solve a few, spin models and study the resistor network and percolation 
problems on these lattices. 

1. Introduction 

This is the second in a series of three papers devoted to the subject of phase transitions 
on fractals. The first paper (Gefen et a1 1983, hereafter referred to as I), concentrated 
on quasi one-dimensional ( I D )  fractals (Koch curves). In the third paper (Gefen et a1 
1984, hereafter referred to as 111) we study phase transitions on Sierpinski carpets. 

In the present paper we focus on the Sierpinski gaskets ( S G S )  and their generalisa- 
tions to  a’ Euclidean dimensions. The SGS are interesting since they are non-trivial 
lattices on which physical models can be exactly solved. These models exhibit critical 
behaviour which is intermediate between those of I D  and higher-dimensional ones. 
Another important motivation for studying critical phenomena on the generalised SGS 

is that these lattices seem to imitate in many respects the backbone of the infinite 
cluster at the percolation threshold (Gefen et al  1981b). The exact solution of various 
physical problems on these lattices may help us understand better the behaviour of 
related models on the backbone. 

The outline of the paper is as follows. In § 2 we describe the construction of 
S G S  in a general Euclidean dimensionality d. In § 3, we solve Ising models on the 
two-dimensional ( 2 ~ )  and 3~ gaskets. For the 2~ SG we also generalise our analysis 
and solve the q-state Potts model. Section 4 considers percolation on our lattices. 
Finally, § 5 is devoted to the solution of the DC conductivity of resistor networks on 
these fractals. This latter problem is probably related to the low-temperature behaviour 
of continuous ( n  2 2 )  spin models. 

0305-4470/84/020435 + 10$02.25 0 1984 The Institute of Physics 435 
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2. Geometry 

Our geometrical model consists of a generalisation of the Sierpinski gasket (Mandelbrot 
1977, 1982, Gefen et a1 1980, 1981b) to d Euclidean dimensions: one starts with a 
d-dimensional hypertetrahedron. The midpoints of the edges are connected, creating 
( d - t l )  small hypertetrahedra. The volume at the centre (bounded by the faces of 
these new tetrahedra) is then removed, and the procedure is repeated for the ( d  + 1) 
new tetrahedra. The procedure is illustrated for d = 2 in figure 1. One construction 
step for d = 3 is shown in figure 2. The construction procedure is repeated down to 
a ‘microscopic’ length scale, a. Each step changes the length scale by a factor 2, and 
creates ( d  + 1) new units. Therefore the fractal dimensionality (Mandelbrot 1977, 
1982) is given by 

D = l n ( d + l ) / l n  2. (2.1) 

AAAA 
Figure 1. The SG in ZD. The initial triangle and the first three construction stages are  
shown. The limit shape has the Euclidean dimensionality d = 2, and the fractal dimensional- 
i ty  D = In 3/ln 2 = 1.585. 

Figure 2. First construction stage for SG with d = 3,  D = In 4/ln 2 = 2 

Another important geometrical feature of these lattices is the order of ramification, 
R.t For SG R,,, = 2d and R,,, = d +  1 (for points that are not lattice points), i.e. SG 

are ‘quasihomogeneous’. Notice that if at each construction step the eliminated volume 
is slightly increased (decreased) then R becomes zero (infinite). In this sense our 
gaskets are ‘marginal’, similarly to the infinite cluster (or its backbone) at percolation 
(Gefen et a1 1981b). 

+ The order of ramification R at a point P measures the smallest number of significant interactions which 
one must cut in order to isolate an arbitrarily large bounded subset surrounding P. The maximum and 
minimum values of R obey R,,, 3 2R,,, - 2. When equality prevails, a curve is ‘quasihomogeneous’. When 
R,,, = R,,, (requiring R = 2 or R = *), a curve is ‘homogeneous’ (see Mandelbrot 1982, ch 14). 
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3. Discrete spin systems 

We now consider various spin models on the SG lattices. Each spin is put on a 
‘microscopic’ lattice site. In principle, all spin systems on the SG are exactly solvable, 
due to their finite order of ramification. However, the calculation becomes more 
complicated as the dimensionality increases; a larger number of relevant interactions 
should be included, and more spin states must be integrated out at each renormalisation 
group (RG)  step, We thus concentrate here on a few cases, the generalisation to other 
systems being straightforward. 

Hereafter we shall limit ourselves to models with nearest-neighbour interactions 
(on the ‘microscopic’ scale) only. More generally, in all the cases we studied with 
finite range and strength of interactions, a finite R implies that no phase transition 
occurs at any finite temperature, i.e. T, = 0. This result is consistent with the standard 
inequalities or entropy arguments (see e.g. Griffiths 1972, Thompson 1972). At any 
small finite temperature, the system may break into domains (or generate other 
excitations if the spins are continuous), gaining free energy. (The system gains an 
entropy which is higher than the energy needed to create the excitations.) As a 
consequence order is destroyed at any finite T. 

3.1. Ising models in ZD SG 

Classical Ising spins ( S i  = *l) are put on the ‘microscopic’ lattice sites of figure 1 
(after the iterative decoration down to the microscopic nearest-neighbour scale a 
was performed). At zero field, we consider the nearest-neighbour exchange 
Hamiltonian 

2 p - J  C SiSj+A, (3.1) 
( i i )  

where A is a constant. The RG equations are obtained by summing over the internal 
spins of all the triangles of linear size 2a. The rescaling factor here is b=2 .  The 
resulting recursion relation for K = J /  kT is (Gefen et a1 1980) 

+4)/(e4K +3).  (3.2) e 4 K ’  = (e8K - e4K 

The only fixed points of equation (3.2) are at K = 0, 03. The point K* = 0 is an 
infinite-temperature stable fixed point. K * = CO is a zero-temperature unstable fixed 
point. Near T = 0 ,  equation (3.2) reduces to 

t ’=  t+4t2+O(t3) ,  (3.3) 
where t=e-4K is chosen as the low-temperature small variable. (This is a natural 
generalisation of the one-dimensional t = e-ZK, since now the coordination number is 
4, instead of 2 ) .  Writing the correlation length as (- t -” ,  the coefficient of the linear 
term is 2’, with y = 1/ v. In our case, this coefficient is equal to unity, i.e. y = 1/ v = 0. 
The temperature is thus a ‘marginal’ variable. This is probably related to the marginal 
character of the S G ,  in the sense that one may have a finite T, by introducing small 
changes into its structure. 

For small t, the solution of (3.3) is 

? ( I )  =[4( I,- I)]-’+O[(I,- I p ] ,  (3.4) 
where 4l, = 1/ t (0)  = e4K. After 1 iterations, the correlation length becomes ( ( I )  = 5/2‘. 
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Iterating until t ( 1 )  becomes of order unity, this implies that (a 2'a21/4 ' ,  i.e. 

Y Gefen, A Aharony, Y Shapir and B B Mandelbrot 

( a e x p ( i  In 2 exp(4K)). (3.5) 

Since the number of spins in a volume of size 5 is tD, we expect the singular free 
energy to behave as Fa  If we wrote this as f 2 - a ,  we would conclude that a = -a, 
in agreement with the hyperscaling law Dv = 2 - a and Y =CO. 

Since the transition occurs at zero temperature, the magnetisation per spin 'jumps' 
from zero to unity at f = 0. Thus, the recursion relation for the magnetic field must 
be of the form h' = 2Dh, and the magnetic exponent x is equal to D (I, Nienhuis and 
Nauenberg 1975). Thus, F (  f, h )  = t D h ) ,  and we find that M a  to, ,y a tD, etc. 

Note that the choice f =e-4K was arbitrary. We could have chosen i =  
exp(-a In 2 exp(4K)), and found that i' = 2i. With this parameter, we would have 
y = l / v  = 1. 

3.2. Ising models on 30 SG 

We now put king spins on the ~ D S G  (figure 2). The most general Hamiltonian for 
nearest-neighbour interactions is 

The four-spin interaction J2 is defined for spins placed on the vertices of a tetrahedron. 
Using the notation K = J l / k B T  and L= J2/keT, and tracing over all the spins on the 
midpoints of the edges, we obtain the following RG recursion relations: 

(3.7a) 

e24K+4L+e-4L+6e12K +12~4K +3e-4L+4e4L+4e-4L 
e l X K + 2 L  + g e 6 K - 2 L  + 3  e10K+2L+24 e-2K-2L  + 15 e 2 K + 2 L '  (3 .7b)  

The analysis here is more complicated than in the previous case, since we now have 
a two-dimensional parameter space, ( K ,  L ) .  It is easy to see that if we start with K >> 1, 
L = 0, we immediately flow to K = -L >> 1. Thus it is useful to study the behaviour 
near the T = 0 fixed point, K = -L = CO. To leading order near this fixed point we can 
write equations (3.7) as 

e h K ' + 2 L '  = 

Y I  
0 

0 
/ 

Morginol / 
direction / ' 

Figure 3. Schematic flow diagram in a 2D parameter space, for king models on 3~ SG. 
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Taking the square of equation ( 3 . 8 b )  and using the notation x 3 e-8K, y = e-12K-4L 
we obtain 

(3.9a, b )  x ’  2: 2y + 2x2 + 20xy -4y2, y’ = y +6xy +4y2. 

To linear order, this reduces to 

(3.10) 

The eigenvalues and their right eigenvectors are 0, 1 and (A) and (f) ,  respectively. The 
eigenvalue 0 represents a highly irrelevant variable, which disappears immediately 
after the first iteration. The second eigenvalue, 1, is to  be identified with 2””,  so that 
again the temperature is a marginal variable and v = 03. A general initial vector 

will thus become 

(;:) = Y( ;>. 

(3.11) 

(3.12) 

To this order, this vector will then remain invariant, with x(  I) = 2y( I )  = 2y(O). Again, 
this reflects the fact that the temperature is marginal and that Y = W .  

To linear order, the first iteration brings us to the line x = 2y. To find the deviations 
from this line, we must go to order y’. Substituting x = 2y + 2ay2 into both equations 
(3.9), we find that they become identical provided that we choose a = 6. In this case, 
both equations reduce to y’ = y + 16y2, with the solution y(  I )  --. 1/ 16( lo- I), where 
1610= y( 1)-‘ -- 2x( 1)-’ = 2 exp(8K). Combining with (a 2‘ we now find that 

t aexp(k  In 2 exp(8K)), (3.13) 

which is very similar to equation (3.5). The other thermodynamic quantities will also 
follow the behaviour described for the 2~ case. 

3.3. Potts models on 20 SG 

We next study a q-state Potts model with nearest-neighbour interactions, put on the 
ZD S G .  The most general Hamiltonian (in units of 1/p = kBT) is 

(3.14) 

where q (the spin attached to the ith site) may assume q different values. The 
three-spin interaction refers to spins sitting on the vertices of the basic (‘microscopic’) 
triangle. One RG step consists of summation over the ‘internal spins’, U,, U*, u3 
while the external spins are held at fixed states, a, P,  y (see figure 4). Let us denote 
by W[,A,] the result of such a summation. It is convenient to use the notation 
W[,6,] = D ( K ,  9); W[,&] = e-2KN(K, A,  q), a # p ;  W[,b,] = M ( K ,  A, q), a # 
p # y. The resulting RG recursion relations are 

0 

(3.15~1, b )  
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Figure 4. Potts models on 2D S G :  a schematic RG step. Summation is performed over the 
‘internal spin’, U ) ,  U* ,  u3, a, p, y denote states of the ‘external’ spins. 

Since the model has no finite-temperature phase transition we are interested in the 
behaviour near the T = O  unstable fixed point ( K ,  A >> 1). The other (stable) fixed 
point is expected to be at T = 00 ( K  = A = 0). We thus concentrate on the low-energy 
excitations of D, N and M. A consistent diagrammatic calculation of these quantities 
is presented in the appendix. Substituting the leading terms of D, N and M in equations 
(3.15) we obtain 

[I + 4  e-2K + 3(q - 1) e-4K + 2 ( q  - 2) 
[I + 3 ( q - i )  e-4K +. . . 3 

. - 3  e-2K’  - e-2K 9 - 

e-3K’-A’ = 3 e-4K ( 1 + 2 e - ~ - ~ + . . . )  
[1+3(q-  1) e-4K +. . . 3‘ 

(3 .16a)  

(3.16 b )  

Denoting x e-2K, y 2  
x and y :  

we obtain the following equations to second order in 

x ’  = x +4x2,  y r  = J 3 x  + t J 3 y 2 .  (3.17a, b )  

The parameter q enters only in the third order and affects only corrections to the 
critical behaviour. In the linear order equations (3.17) can be rewritten in the following 
way 

(3.18) 

yielding the eigenvalues 0 and 1 with the gigenvectors ( y )  and (&. Repeating the 
same procedure as before, we find that y = J 3 ( x  + $ x 2 ) .  Solving the recursion relations 
for x then yields 

t a e x p ( +  In 2 e x p ( 2 ~ ) ) ,  (3.19) 

independent of q. Noting that in the Ising case, q = 2, we had JSiS, = .J(2cSSis, - l ) ,  this 
result is consistent with equation (3.5). 

The examples treated here probably indicate that forms like (3.19) are typical €or 
all the discrete spin models on general d SGS.  



Phase transitions on fractals: II 44 1 

4. Percolation on SG 

We now delete a fraction p of the bonds on the S G .  Since the order of ramification 
is finite, we expect the SG to break into finite clusters for all p > 0. The point p = 0 is 
thus expected to be an unstable fixed point of the RG, for any d. The typical size of 
the finite clusters, 6, diverges to infinity as p + 0. 

In order to construct recursion relations for the ZD S G ,  consider the triangle ABC 
in figure 5 ( a ) .  On the large scale, the points B and C will be separated from the point 
A only if both the (renormalised) bonds AB and AC are missing (broken lines). The 
probability for this is ( P ’ ) ~ .  On the smaller scale, A will be separated from both B 
and C if AD and AE are missing (figure 5 ( b ) ,  probability p 2 ) ,  if AD, DE, EF and EC 
(or AE, DE, DB and DF, or DB, DF, EF and EC, or DB, BF, FC and EC, figures 
5(c)-(f) ,  all with probability p4), etc. Thus 

(p’)’  = p 2  + 4p4 + 0 ( p 5 ) .  (4.1) 

A 

la) 

l b )  ( C )  Id 1 lei I f )  

Figure 5. RG step for percolation on the 2D sG. Missing bonds are denoted by broken lines. 

This is exactly the recursion relation for e-2K in the Potts model, equation (3.17a). 
Indeed, one expects the Potts model to map on the percolation problem in the limit 
q + 1 (e.g. Kasteleyn and Fortuin 1969), with p +  eCK. From (3.19) we now conclude 
that 

(OC exp(a In 2 / p 2 ) .  (4.2) 
As before, the dependence of other quantities may be directly deduced using scaling 
relations. 

A similar procedure for d > 2 also yields ( p d ) ’  = p d  +higher order, and we thus 
expect essential singularities like (4.2) for all SGS.  

5. Electric conductance on SG 

Another physical quantity which is affected by the anomalous geometry of the SGS is 
the electric conductance of a resistor network placed on them. Again, we approach 
the problem using an exact RG procedure. The magnetic bonds of the previous sections 
are replaced by resistors. In principle, the resistance of a large hypertetrahedron 



442 Y Gefen, A Aharony, Y Shapir and B B Mandelbrot 

before and after the rescaling transformation should be the same. To construct our 
recursion relations, we compare two hypertetrahedra of length 2a ( a  being the length 
of a bond before rescaling). One hypertetrahedron consists of 'bonds' (resistors) of 
length a, the other consists of rescaled resistors of length 2a. We now send a current 
I into each of the two tetrahedra, and consequently a current I / d  comes out through 
each of the other d corners. We require that the corresponding voltages of the two 
tetrahedra will be the same and find the rescaled resistance R ( 2 a )  as a function of 
the original R ( a ) .  Notice that the symmetry of the problem simplifies the calculation 
of currents and voltages in the system. Thus, for example, for the 2~ gasket, one may 
send a current I into the structure shown in figure 4 through the point a, and take 
out currents +I and 41 from points /3 and y respectively. Using that symmetry, there 
will be no current flowing through the bond between a, and m3. The equivalent 
resistance between a and y will thus be 

R,,, + 1/[1/R02Y + 1/(RV,Cr2 +RV,Y)l. 

R ( 2 a )  = [ ( d  + 3)/(d + 1 ) ] R  ( a ) .  (5.1) 

(=In[ (d+3) / (d+l ) ] / ln  2. (5 .2 )  

R ( L U )  - L I R ( ~ ) .  (5.3) 

cT(La) - L 2 - d / R ( L a ) .  (5.4) 

More generally the resulting relation for the equivalent resistance is 

Rewriting this as R ( 2 a )  = 2 i R ( a )  we obtain 
.. 

The resistance of the renormalised resistors at length scale L is thus 

One may define the conductivity of an equivalent homogeneous medium at scale L as 

We can also write this as a ( L a )  - L-' with f = d - 2 + 
A possible by-product of these results concerns the low-temperature properties of 

dilute n-component spin models, with n 3 2. To lowest order in 1/K = kBT/J ,  there 
exists an equivalence between the recursion relations for 1/K and for R ( R  being the 
resistivity per bond, see Stinchcombe (1979)). This equivalence also follows from the 
similarity between Kirchoff's equations and the equations describing spin waves at low 
temperatures (Kirkpatrick 1973). Equation (5.1) thus implies that for these models 
one has 

T' = [( d + 3)/(  d + 1)]T, 

yn = 1/ vn = ln[(d + 3)/ ( d  + l)]/ln 2 ='l 

( 5 . 5 )  

(5 .6 )  

i.e. 

The correlation length is therefore predicted to diverge as 6 -  T-".. This power law 
behaviour implies that the SGS are not marginal with respect to continuous symmetry 
models. 

6. Conclusion 

In the present paper we have constructed and analysed a generalised ddimensional 
family of SGS.  In quite a few respects the SGS deserve special consideration. They are 
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non-trivial, and still exactly solvable. They can be regarded as being marginal 
geometries between I D  (or quasi I D )  figures and infinitely ramified fractals (e.g. the 
Sierpinski carpets). Employing the fact that they are exactly solvable we have solved 
various spin models on these lattices. We also studied their electrical conductivity and 
discussed the problem of percolation on these lattices. 

It is straightforward to extend and generalise the above calculations to other models 
put on the S G .  Their simplicity (and yet, non-triviality) makes them a useful geometrical 
realisation for various physical systems, in particular, systems at percolation (see e.g. 
Gefen et a1 1981a, 1981b, Aharony et a1 1981, Stephen 1981, Alexander 1983). 
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Appendix 

In this appendix we give details of the diagrammatic calculation of the leading terms 
in D, N and M. Table 1 summarises these leading terms. In the notation of figure 4, 
the first entry in the table corresponds to a = /3 = y = u, = u2 = u3, and this common 
value (state) is denoted by 1. Clearly, this diagram contributes to D (as do all diagrams 

Table 1. Leading contributions for low-remperafure Potts model recursion relations. 

Leading 
contributions to a P Y Cl U2 uj Degeneracy Energy 

D 1 1 1 1 1 1 1 0 
1 1 1 2 1 1 3(q-1) 4 K  
1 1 1 1 2 2 3(q - 1 )  6 K  
1 1 1 2 2 2 4 -  1 6 K  

e-’ N 2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
2 
2 
2 
3 
1 
3 
1 

1 
1 
2 
2 
1 
1 
1 
3 
3 
1 

1 1 
2 2 
2 1 
2 1 
1 1 
2 2 
1 q -2  
3 q - 2  
3 q - 2  
3 2(q - 2) 

2 K  
4 K  
4 K  
4 K  
6 K  
6 K  
6 K  
6 K  
6 K  
5 K i A  

M 1 2 3 1 1 1 3 4 K  
1 2 3 2 1 1 6 5 K i A  
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with a = p = y ) .  Since all bonds are satisfied, the energy of this non-degenerate 
configuration is zero. Similarly, the second entry in the table has a = p = y = u2 = u3 # 
ul. There are four unsatisfied bonds, and the site u1 could be in any of the remaining 
( q  - 1) states. The remainder of the table is self-explanatory, and the combined results 
yield equations (3.16). 
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